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Abstract

Using a variational principle, a system of equations is de-
rived for the theory of extension and bending of elastic plates.
The equations take into account the stress variations across the
thickness of the plate which depend on the characteristic dimensions
arising in a given boundary-value problem such as the cavity size,
plate thickness, etc. The system of equations are formulated in
terms of the generalized transverse displacement and two other func-
tions which represent the distribution of the transverse shear stress-
es in the plane of the plate. For illustration purposes, the problem
of the uniform extension of an infinite plate containing a rectangu-
lar crack through the thickness is solved by application of integral
representations. Numerical results are displayed graphically and
important differences are noted between the solution of the present
theory and that obtained by means of the customary equations of
generalized plane stress. One of the significant and new features of

the solution is that the stress state depends on the plate thickness
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to crack Tength ratio and a dfmension]ess parameter characterizing
the stress distribution across the thitkness. It is apparent from
the present work that the new theory may also be applied to numer-
ous other prpb]ems involving cavities where the deviations from the
results of the classical plane extension and plate bending theories

are of interest.

Introduction

Since the literature relating to the analysis of plates has been
very extensive, a detailed exposition of the subject would be inapprop-
riate here. Within the scope of this paper, however, it should be
mentioned that the approximate theories of thin plates are unreliable
in the case of plates of considerable thickness, or when the plates are
weakened by cavities whose dimensions are of the same order of magni-
tude as the plate thickness. In such cases, the stress variations in
the fhickness direction must be accounted for and the problem adopts
a three-dimensional character. An obvious recourse is to treat the
problem of plates as a three-dimensional problem of elasticity. The
stress analysis becomes, consequently, more involved and, up to now, the
problem is completely solved only for a few particular cases [1].4

The stress distribution in a thick plate containing a smooth cir-
cular cavity has been discussed by Sternberg and Sadowsky [2], Green
[3], and others. On the basis of the Ritz method, an approximate
three-dimensional solution was obtained in [2] by means of the so-
called "residual problem of plane stress”. An exact formulation of the
same problem was presented by Green [3] utilizing series expansions and

was solved by Alblas [4]. Their work showed that the thickness of the
4
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plate can exert appreciable influence on the stress concentrations

of the circular hole. When the periphery of the cavity contains re-
entrant corners or singular points, such as a sharp crack, the problem
is considerably more difficult mainly because the conventional math-
ematical techniques are not suitable for handling three-dimensional
problems with geometric singularities. An attempt has been made by
Sih et al [5] to investigate the triaxial characteristics of the
crack-edge stress field in a thick plate. They made use of the Gal-
erkin biharmonic functions and found the qualitative character of the
local stress field interior to the plate. The nature of the stress
state in the surface layer, where the crack penetrates through the
plate, remains unresolved. In another paper [6], Hartranft and Sih
confirmed the results in [5] by’a more rigorous method using eigen-
function expansions.

The main concern of the present paper is to develop an approxi-
mate theory of plates that can lead to an improved quantitative anal-
ysis of the problem of a crack in an elastic plate. The earlier work
of Williams [7] and Sih [8] dealt with the stress anaTysis of the
bending of cracked plates in which the fourth-order thin plate theory
of Poisson-Kirchhoff [9] was used. Thus, it was inherent in the
theory that the physically natural boundary conditions on the edge of
the crack can be satisfied'only in an approximate manner. Knowles and
Wang [10] improved the situation by obtaining a solution to the crack
problem using a Reissner's sixth-order theory [11] such that the
effect of the transverse shear strains are included. This permits the
satisfaction of the three expected boundary conditions on the crack.
Their result, however, applies only to the case of a vanish-
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ingly thin plate. A further refinement of the bending problem was
made by Hartranft and Sih [12] who extended the work in [10] to
account for variations in the plate thickness. One of the serious
shortcomings, which are common to all of the aforementioned theories,
is that in-plane stresses are assumed to vary linearly through the
thickness. Recently, Sih [13] has employed the theory of Golden-
weiser [14] and obtained the stress distribution around a crack in

a bent plate. 1In his work, the stresses across the plate thickness
can be arbitrarily assigned in accordance with experimental evidence
and are functions of fhe plate thickness to crack length ratio.

The most popular theory for problems of plane extension is that
of generalized plane stress. Loosely speaking, the approximate
nature of this theory lies in the assumption that the in-plane stress-
es are uniform in the average sense through the thickness and the re-
maining stress components are sufficiently small in magnitude so that
they may be neglected. Despite the above oversimplifications, the
foundation of the current theories of crack extension in plates [15]
rests basically upon the genera]iied plane stress solution of Inglis
[16] who published his work on the elliptical cavity over fiffy years
ago. In reality, the stress distribution in a <cracked plate of fin-
ite thickness is neither in a state of plane strain nor genera]ized
plane stress. Hence, the need for'a‘more refined solution of the
basic crack problem which accounts for some of the three-dimensional
effects is apparent.

The proposed theory is constructed with the objective of reduc-

ing the analytical difficulties associated with the three-dimensional
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equations of elasticity while the essential features of the three-
dimensional characteristics of the solution are retained. This is
guided by the solution in [5,6] from which an understanding of what
is disregarded and what is retained in the approximate theory can
be gained. The method of derivation is somewhat related to one of
Reissner's theories [17] and the resulting equations meet all of the
requirements of the three-dimensional theory of elasticity except
for the stress-displacement relations which are satisfied approxi-
mately. Depending upon the evenness and oddness of the function
that describes the stress distribution in the thickness direction,
the newly developed theory can be applied to problems of either
bending or extension of plates.

As an example, the problem of a through crack in an infinite
plate stretched uniform]y at infinity is considered. With the aid
of Fourjer transforms, the boundary conditions of the crack problem
lead to a set of dual integral equations which can in turn be reduced
to the solution of a single Fredholm equation of the second kind.
Asymptotic expansions of the stresses near the end points of the crack
are carried out and reveal that the qualitative character of the singu-
lar solution interior to the plate coincides with the exact solution
found in [5,6]. The thickness dependence of the local solution is re-
flected through a function that can be determined from the plane
strain condition as suggested in [5,6]. Although the stresses in a
layer close to the plate surface are not known, they can be chosen in
such a way so that the traction free condition on the plate surface
and the condition of continuity with the interior solution are satis-

fied. Finally, the results are compared with those obtained from the
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~generalized plane stress theory discussed in connection with the
possibility of generalizing the current theorie$s of fracture to in-

clude the effect of plate thickness.

The Equilibrium of an Elastic Plate

Consider the equilibrium of a homogeneous, isotropic, elas-
tic plate, i.e., of an elastic medium bounded by two parallel planes.
The medium occupies the region |z|<h/2 and the middle surface of the
plate coincides with the xy-plane as shown in Fig. 1. The plate is
subjected to certain load conditions at infinity, leaving the faces

of the plate at z = + h/2 free of tractions, i.e.,
o, =1t,, =1, =0 for z = +h/2 (1)

Without undue complication, the loadings are assumed to be
symmetric about the xy-plane so that only extensional deformation
js produced with no bending. The bending problem follows in the
same way simply by taking the loads to be skew-symmetric with res-
pect to the mid-plane of the plate. In order to reduce the three-
dimensional problem to manageable proportions, the following form of

stress state is assumed:

]

_ %7 £ (22/h)[S,, S

y®> xy Tey]

Loy o y* Txy

L

(1]

- £ £ (22/h)2,, 7,] (2)

Txz? Tyz] y

oé = f(2z/h)Z,

in which the functions Sx’ S Z

y? X Zy and Z, depend on x and y

only and the function f, which is to be determined subsequently,
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depends on z only. Inserting eqs. (2) into the stress equations of

equilibrium yields

3S aT AT 3S
Z = X+ Xy Z, = Xy 4 Y
X X oy Ty X Ay
, , (3)
3 3
Z - .———&-[- ___l
z X dy

The differential equations and boundary conditions of the
theory in terms of the functions Sx, Sy, etc. can be best deter-
mined by requiring the complementary energy of the system to be as
small as is possible with the admitted equilibrium state of stress
in eqs. (2). This enables the reduction of the three-dimensional
equations of elasticity to a system of equations involving only two
variables, namely x and y. The mode of stress distribution in the

z-direction as governed by the function f will be found separately

with the condition that
f(+1) = £'(#1) = 0 (4)
which corresponds to satisfying the free-surface requirements

stated in eq. (1).

Application of the Calculus of Variations

The application of the minimum energy principle for deriving
equations in the theory of plates or shells has been well explored
in the past. Thus, only a brief statement of the principle will
be made and most of the mathematical details leading up to the gov-
erning differential equations will be omitted.

The principle of minimum complementary energy states that, among

all possible states of stress which satisfy equilibrium in the in-
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terior of the body and the prescribed surface tractions, the actual
state of stress makes T a minimum. Here, U stands for the compie-

mentary energy

n = l—f JJJ[G% + 0§ + o% - 2v(cxoy + 9,0, + ozcx)
v

+2(]+v)(r§y + T§Z + T%X)] dxdydz (5)

_JJ [onun * TasYs * TnzYz7 dsdz

where E is Young's modulus and v is Poisson's ratio. In eq.'(5),
V is the volume occupied by the elastic body and S1 is the portion
of the surface of V on which the displacements U _, U

s
prescribed. The displacement components Un and Us are defined in

and Ué are

the directions normal and tangential to S and Ué is the displace-
ment component in the direction perpendicular to the plate.
According to the minimum principle, the variation of I in eq.
(5) is made equal to zero in such a way that the constraints shown
by eqs. (3) remain satisfied. To this end, the Lagrange multipliers

Uy uy and u, are introduced and the desired variation becomes

35S 5T
. _ xSy
{1 JJ [QX(Zx X 3y
R (6)
5T 5S | Y 57
. XY Y - X _ y =
+uy(Zy =X 5y ) + uz(ZZ ” 3y ) Jdxdy} 0



where R represents the area of the plate. Making use of the

stresses in eqs. (2) and carrying out the integration by parts,

it can be shown that

au
X 1
JJ{[BX - =oz)p (SxvS, * ve?Z,)1sS,

R
ouy 1 2
+[By " T=v2)D (Sy—vsx + va ZZ)]SSy
(7)
U au
X y _ 2 ‘
+[ay T 5% (T-v)D Txy]STxy
Ju Ju
Z 202 Z 202
tluy * 537 - ooy Ldety + vy + 55 - s 4197,

+ TTj%tjﬁ [(1-v2)D u, - o®(g2+1)Z, + va2(3X+Sy)]5ZZ}dxdy

—j [(un—un)asn + (us-us)csTnS + (uz-uz)szn]ds =0

Ly

and L] is that part of the boundary on which the surface tractions

are not prescribed. The parameters o,8 and D are defined as

1 3 Eh3
2 = Lh2 2 = 2 2) - =
@ = ghtlp. 8% = g(1)/15)-1. D = ey (8)
in which I] and I, stand for
1 1
o= [ IR, 1, = ] EF )12
~1 ~1

with ¢ being the normalized thickness coordinate 2z/h. The general-

ized displacements Uy uy, u,

the displacement components UX, Uy, UZ through the thickness and

in eq. (6) are weighted averages of
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they are given

ux(x,y)

[}

uy(x,y)

uz(x,y)

b
Y 1

[ £7) Uy ) a
-1

=g |V ]

1

R GIMENR T
-1

=iro

1
- h
- j f (E)Uz(xsy92§) dC
-1

Without Toss in generality, the choice

has been made arbitrarily for the sake of convenience.

provide the differential equations of the theory and also the

1
J [f"(z)]2dz = 3/2
-1

(9)

natural boundary conditions of the problem, which allow, under the

assumptions made, either stress or displacement to be specified,i.e.,

Sy T Sh
Ths = Ths
Z, =1,

or Un =
r =
0 US

or Uz =

u

u

u

n

S

Zz

on

(10)

Referring to Fig. 1 in which ¢ is used to denote the angle between

the x-axis and the normal direction, the relationships

Sncos¢ - Tnssin¢ = chos¢ + TX

y

-10-
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Sns1n¢ + Tnscos¢ = TX cos¢d + Sysin¢

Yy
(11)
Zn = Zxcos¢ + Zysin¢
and
U, = u,cos¢ + uysin¢ » U = - ucsing + uycos¢ (12)

can be easily established from the transformation properties of the

stress tensor and displacement vector.

Now, since the variations of the six quantities Sx’ Sy, etc.
in the double integral of eq. (6) are independent and arbitrary,
there results a system of six equations which when coupled with the
three equations of equilibrium in eqs. (3) determine the nine un-
knowns Uys uy, u,s, Sx’ Sy, etc. After some algebra, these equa-
tions may be re-arranged to form a system of three simultaneous

equations in the unknown u,, Z and'Zy as given by

X
a*[1+82/(1-v2)] V“uz - 2a2V2uZ + u, = 0
1 3N
- 2g2 = o
ZX a“V ZX 57 3% (13)
1 N
- 2g2 = g
Zy 0<V Zy s 5y
provided that
BZX YA
aq(1+62K2)(5§—-+ Sil) = (]-V)D[(]-v)uz + vazvzuz] (14)
and
_ D
N = T+82<2 [(1~v)(uz—a2v2uz) + OLZBZKZVZUZ]
where
_ 1=y
k2 = 1+v
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The symbol v2 denotes the Laplacian operator in x and y. The re-

maining six unknowns can then be found directly from u,, Z_ and

X
Zy, i.e.,
Ux =~ zzz ¥ (1?3§D Zy» Uy = - z;Z ¥ (T?iiD Ly (18)
and
Sy = - D(‘%‘i;‘z‘ t v 2;22) + 1‘i‘iE<2-v>Zi v _2_;3/_]
Sy = - D(—;;;£ + v :igz) + ]?i[(Z'V);;l t v zix] (16)
TXy = - D(1-v) zi:y + az(gé— + ;;1)

In some ways, the newly developed equations (13), (15) and (16)
resemble those found by Reissner [11] for the bending of elastic
plates and they are considered to be an 1mpr6vement over the equa-
fions of generalized plane stress. Similar expressions in terms of
circular or elliptical coordinates can also be written down which
will be more suited for studying the stress concentration around cir-

cular or elliptical cavities.

A Pressurized Rectangular Crack

Let a plate of thickness h be cut along the x-axis from X = -a
to x = a resulting in a rectangular cfack through the thickness as
illustrated in'Fig. 2. The surfaces of the crack are pressurized such
that the plate is stretched symmetrically about the xz-and yz—p]anés.
Thus, it is sufficient to formulate the problem for the quarter plane

X >0 and y > 0 subjected to the mixed boundary conditions on the

" =12-



edge y = 0:

ux(x,o) = 0, x>a

(17)

- SOP(x), X<a

L1}

S

Txy(x,o) = Zy(x,O) = 0 for all x (18)

Since the domain under consideration is unbounded, eqs. (17) and (18)

need to be supplemented by the regularity condition that the displace-

ments and stresses are finite as (x,y)»=.
The method of integral transforms will now be used to solve egs.
(13). Omitting the details, the displacements in the transformed do-

main are, where s is the transform variable,
(1-v)Dui = 2(1-v)o'gms3A(s) exp(-msy)
~a2sA(s) Im[(1+igx)(q/plexp(-psy)]
(1-v)Du§ = 2(1-v)a*Bs3A(s) exp(-msy) (19)
-a?sA(s) Im[(1+igk)q exp(-psy)]

(1-v)Duj = a?A(s) Im[(1-igc)(a/p) exp(-psy)]

which are consistent with the regularity requirement at infinity and
the boundary conditions of eqs. (18). The transforms of the quanti-
ties describing the variation of the in-plane stresses as a function

of x and y are

S§ = é(]—v)a“sms“A(s) exp(-msy)

-~13~



-A(s) Im{[-—2E—— + (1+igc)a252](a/p) exp(-psy)}

B=1vVIi-v

S; = -2(1-v)a"*gms*A(s) exp(-msy)

1

T-v

+

A(s) Im [(q2/p) exp(-psy)]

Tx; = - (1-v)a28s2(1+202s2) A(s) exp(-msy)

+ A(s) Im [(1+iBk)q exp(-psy)]

and the transform expressions of ZX, Zy, ZZ may be written as

Zi = (1-v)a2gms3 A(s) exp(-msy)
-sA(s) Im[(q/p) exp(-psy)]
Z; = (1-v)a?8s3 A(s) exp(-msy)

-sA(s) Im [q exp(-psy)]

Zc V]'\)

2 = rT-vzrgzy A(s)ImL(/T-vZ-ig8)(a/p) exp(-psy)]

(20)

(21)

The auxiliary quantities m, p and g appearing in egs. (19) to (21)

are defined by
-2
m2 = 1+(as) , q = ¥T-vZ [1+(1+igk)a?s?2]

p = |p| exp(-iv/2)

where

Ipl = t(1-v2+82)" [ (1-v2)m4+p2] 31/4

and

- B8
v = tan ,[éj+(62+1)u252} » 0<v<m/2

-14-



The foregoing expressions are derived on the basis that g is real

and hence the inequality
2
I] > (2/3) I2

must hold. This restriction in no way affects the fundamental char-
acter of the solution. The superscripts s and ¢ in egqs. (19) to
(21) are used to identify the sine and cosine tranform of a given
function. The appropriate inverse transforms of the displacements

and stresses follow immediately from the inversion theorem as

o

ux(x,y) = % J ui (s,y) sin(sx)ds

: (22)
uy(x,y) = % J u§ (s,y) cos(sx)ds

)

etc. which constitute the complete solution to the problem once the
unknown A(s) is found.
There remains the satisfaction of eqs. (17) which render the

dual integral equations
f sA(s) cos(sx)ds =0 , x>a
0

© 7S (23)
j s2£(s) A(s) cos(sx)ds = - —2 P(x), x<a
(4]

for the determination of A(s) as f(s) is a known function given by
2/T-vZ .
f(s) = {-2a"gkms™
() = Sopeafpy (-2atexms’lp] (24)

+[(1+a2s2)2+ (BK)Z(QS)q]Sin% + [2(1—v)(1+u252)a2852]cos%}

-15-



A procedure for solving dual integral equations of the type shown in
eqs. (23) has already been thoroughly discussed in [12] and thus only
the essential steps will be outlined merely to preserve the continu-
ity of the analysis.

With thé aim of reducing the problem to a standard integral

equation, a new function

Rec]

w(x) = -%-QZBI sA(s) cos(sx)ds (25)
o
is introduced. Upon application of the Fourier inversion theorem
and the first of eqs. (21), it is not difficult to arrive at the re-
sult

2 a
sA(s) = - —;;j w(x)cos (sx)dx (26)
o [0}

The structure of the function w(x) is determined by the singulari-
ﬁies inherent in the physica] problem. For the present case, the

representation

a
w(x) = J (t) t dt, x<a (27)
X VtZ-x?

where w(x) = 0 for x>a is admitted. The function ¢ is to be defined
on the interval [0,a] and is permitted to depend on the parameters

@, B, v, etc. Eliminating w(x) between eqs. (26) and (27) yields
a
sA(s) = - ZFg] w(e) 3 (st) ¢ at (28)
0

where Jo 1s the zero-order Bessel function of the first kind. Insert-

ing eq. (28) into the second of eqs. (23) gives

- -16-



% a
[ stis) cos(sx) as [ w(e) 9g(st) & dt = 5p(x), x<a (29)
o 0

Further, by letting

f(s) = U2l el rag(s) ]

-2
such that g(s) = 0(s” ) as s»=, eq. (29) can be put into a standard
Fredholm integral equation of the second kind:

1 g
o(e) + [ Flesn) otn) dn = 2 vg [ Rlankdn gopy (30)
o 0 £4-n

in which the kernel

e o]

F(g,n) = Ven f S g(%) Jy(gs) J (ns)ds, O0<g<l; O<n<l (31)
0

is symmetric with respect to the dimensionless variables ¢ and n

which are normalized against the half crack length a. The unknown

® in eq. (30) is related to ¢ by

o(g) = (]'¥33§1;§2) + VT y(ag) (32)
0]

In connection with the numerical solution of eq. (30), it is de-

sirable to further set

gls) = (as§2+n2 ¥ hé:)

where

1 (1-v2)+(2- v+3v2)62+(1+v)
=z (T+eZ) (T-vZ+87)

-17-



2 -1
n2 = 1 (1-v2) +(4-6v+15v2)(1-v2)p2+(5-8v~-5v2)g*+2(1+v) g"
4 (T-v2+g2)[(1-v2)+(2-vt3v2)p2+(T1+v)"Tp*]

such that eq. (31) becomes

F(g,n) = (a/a) VEn [(Ca/a) 1 (2 ng) K (5 nn)

(33)
+JO h(%) Jo(gs) JO(nS) ds], o<gxn

with I0 and KO being the zero-order modified Bessel functions of the
first and second kind. The advantage of this alternative expression

of F as compared to eq. (31) is apparent from

h(s) = 0(5—5) as S-o

Finally, returning to the solution of the original set of dual

integral equations, A(s) takes the form

m{1-v2+82) Soa

Als) = - 5zyeze(Teen) 52 te(1) 9, (sa)
Td ra(e) )
‘Jo'ag L e 1 d,(sag) ¢ de}

where J] is the first-order Bessel function of the first kind. Eq.
(34) may be put into egs. (19) to (21) for obtaining the nine unknowns
Uys uy, etc. from which the displacements and stresses at every point
in the plate may be calculated once ¢ is eva1uated from the Fredholm

integral equation and the function f(2z/h) is determined.

. -18-









Stress Variation Across Plate Thickness

Before entering the discussion of numerical results, it is
necessary to find the stress variation in the z-direction or the
function f(z). A possible way of determining f(z)is to require
that the local stress field interior to the plate be in a state of
plane strain as dictated by the exact analysis in [5,6]. Thus, by
putting the appropriate stress components from eqs. (36) into the
condition

o. = v(o_%o.) (38)

z Xy
there results the harmonic equation

" h2 _
f'(z) + ToZ(T+E2Y f(z) = 0, |zg|<1-¢ (39)
whose solution is
- hg
f(z) = B cos [—————1, |z|<1-¢ (40)
2a/1+87

since f(z) must be even in ¢ for the plane extension problem.

In the above expression, B is a constant and the quantity h/2a/1+87

in the argument of the cosine function can be related to f(z) as

1 2
j (0 e | 172

_h : - (41)
S O IR ORI

Combining eqs. (40) and (41), it is seen that f(z) cannot be deter-

mined completely and is valid only for |c|<1-e, where e¢h/2 is used to

denote the thickness of the boundary layer close to the plate surface
within which the plane strain condition is not satisfied. This layer

is introduced with the intent of emphasizing that the stress solution
-21-



on the surface layer of the plate is not determined by the present
theory. The function f(z) for (1-¢)<|z|<1, however, can be con-
structed arbitrarily with the requirement that f(c¢) and its first
and second derivatives are continuous at [z] = 1-¢ and that the free-
surface conditions f(+1) = f'(+1) = 0 are satisfied.

Although the determination of f(z) involves a considerable amount
of algebra, it can be calculated numerically without difficulty. A
typical set of curves showing the variations of the in-plane stresses
o, 0, T,,5 the transverse shear stresses =

x> %y? Txy xz® ‘yz
normal stress a, through the plate thickness is illustrated in Fig.3.

; and the transverse

The function f(z)depicted in Fig. 3 gives nearly constant values of
the in-plane stresses along the z-axis, deviating from the constant
only in a layer of thickness th/2 measured from the plate surface.

Within this layer, o o, and 7 rise rapidly and change from com-

x> Ty Xy

pression on the plate surface to tension in the interior region of the
plate. The transverse normal stress is compressive owing to contraction
in the thickness direction caused by the stretching load. Curves of
different shapes may be drawn for various values of B ranging from 0

to =». Once g (which is inversely related to e¢) corresponding to cer-
tain z-distribution of the stresses is found, the Fredholm integral
equation in eq. (30) may be solved for ¢. This, in turn, determines

the variations of the intensity of the three-dimensional stress field
with the dimensionless parameter a/a.Which is related to the plate

thickness.

22~



Discussion of Numerical Results

The requisite numerical results are obtained by solving the
integral equation (30) for ¢ on the computer. These computations
are carried out for a Poisson's ratio v = 0.30 and various 8-
values; the corresponding results are summarized graphically.

In Fig. 4, the normalized stress-intensity factor k1 in eq.
(37) is plotted as a function of a/a for five typical values of 8
in the interval from zero to infinity. Each value of g refers to
a particular set of curves for the stress distribution across the
plate thickness as in Fig. 3. In general, as o/a departs from zero,
all the curves increase in magnitude very sharply at the beginning
and then level off steadily as o/a continues to grow. Notice that
for small values of ao/a or thin plates, a significant change in the
k1—factor may be observed for a slight variation of the thickness
eh/2 of the boundary layer through the parameter 8.

It is interesting to note that the curve for g = =, which cor-
responds to a vanishingly small boundary layer thickness ¢ » 0,
differs from all the others in that it has a non-zero limit at o/a
= 0. This 1imit can be verified analytically for when g -~ 0,
lp|=1,v+0, and hence

g(s) » 4x(1+a?s2)-1
From the above result with o=0, the kernel F(z,n) in eq. (31) sim-
plifies to
F(g,n) = (4x-1) s(&-n)
where & is the Dirac delta generalized function. It follows im-

mediate1y that
4¢ o(g) = /&
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or

o(1) - I for a =03 B = =

It should be emphasized that although the present results are
considered to be a refinement over those of generalized plane stress
they remain an approximation to the three-dimensional problems. In
addition, the theory neglects the effect of plastic flow near the
crack front. Hence, experimental verification of the theory can only

be carried out for brittle materials.
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Figure

Figure

Figure

Figure

Figure Captions

Geometry of a Flat Plate.

Polar Coordinates Around a Rectangular Crack In an
Infinite Plate.

Stress Variations Across the Plate Thickness.

Dimensionless Stress-Intensity Factor versus
Normalized Plate Thickness.
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Figure 3 - Stress Variations Across the Plate Thickness
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